Search results for "Sentinel 2"

showing 4 items of 4 documents

Estimating crop coefficients and actual evapotranspiration in citrus orchards with sporadic cover weeds based on ground and remote sensing data

2022

AbstractAccurate estimations of actual crop evapotranspiration are of utmost importance to evaluate crop water requirements and to optimize water use efficiency. At this aim, coupling simple agro-hydrological models, such as the well-known FAO-56 model, with remote observations of the land surface could represent an easy-to-use tool to identify biophysical parameters of vegetation, such as the crop coefficient Kc under the actual field conditions and to estimate actual crop evapotranspiration. This paper intends, therefore, to propose an operational procedure to evaluate the spatio-temporal variability of Kc in a citrus orchard characterized by the sporadic presence of ground weeds, based o…

FAO-56NDVISentinel 2Settore ICAR/02 - Costruzioni Idrauliche E Marittime E IdrologiaNDWISettore AGR/08 - Idraulica Agraria E Sistemazioni Idraulico-ForestaliSoil ScienceCrop Water requirementsAgronomy and Crop ScienceWater Science and TechnologyIrrigation Science
researchProduct

Multitemporal water quality study in Sitjar (Castelló, Spain) reservoir using Sentinel-2 images

2020

[EN] Water quality is a subject of intense scientific inquiry because of its repercussion in human’s life, agriculture or even energy generation. Remote sensing can be used to control water masses by analyzing biophysical variables. Chlorophyll-a (Chl-a) and Total Suspended Solids (SS) are a well-known feature of water quality. These variables have been measured in Sitjar reservoir (Castelló, Spain) as a part of the project Ecological Status of Aquatic Systems with Sentinel Satellites (ESAQS), in order to compare the results with satellite reflectance data. Two processes were compared to correct atmospherically the level 1C Sentinel 2 (S2) images. The results show that Case 2 Regional Coast…

TurbidezTeledetecció010504 meteorology & atmospheric sciencesSólidos en suspensiónGeography Planning and Development0211 other engineering and technologiesAigua Qualitat02 engineering and technology01 natural sciencesTurbiditySitjarSentinel 2Earth and Planetary Sciences (miscellaneous)TeledetecciónEmbalse021101 geological & geomatics engineering0105 earth and related environmental sciencesReservoirPhysicsRemote sensingReflectivityChlorophyll-aHumanitiesClorofila-aSuspended matter
researchProduct

Estudio integral de humedales altoandinos (andean peatlands) con Teledetección y SIG

2022

La Reserva de Producción de Fauna Chimborazo (RPFCH) es un ecosistema de alto valor situado en los andes ecuatorianos, ocupado en su mayor parte por turberas, también llamados bofedales o peatlands. El objetivo de esta tesis es el estudio de dichos ecosistemas a partir de una extensa base de datos de campo obtenida en 2016 y usando datos de teledetección óptica y radar y variables topográficas, ambientales y climáticas con SIG. Para ello se analizaron los mejores métodos para el cartografiado de los peatlands en la RPFCH, la estimación del carbono bajo el suelo (COS) en la capa 0-30 cm y la estimación del carbono almacenado en la vegetación calculado a partir de la biomasa. Como resultado s…

carbono vegetalbofedalmáquinas de aprendizaje:CIENCIAS DE LA TIERRA Y DEL ESPACIO [UNESCO]carbono orgánico del suelosentinel 2sentinel 1gaussian process regressionUNESCO::CIENCIAS DE LA TIERRA Y DEL ESPACIO
researchProduct

Machine Learning Regression Approaches for Colored Dissolved Organic Matter (CDOM) Retrieval with S2-MSI and S3-OLCI Simulated Data

2018

The colored dissolved organic matter (CDOM) variable is the standard measure of humic substance in waters optics. CDOM is optically characterized by its spectral absorption coefficient, a C D O M at at reference wavelength (e.g., ≈ 440 nm). Retrieval of CDOM is traditionally done using bio-optical models. As an alternative, this paper presents a comparison of five machine learning methods applied to Sentinel-2 and Sentinel-3 simulated reflectance ( R r s ) data for the retrieval of CDOM: regularized linear regression (RLR), random forest regression (RFR), kernel ridge regression (KRR), Gaussian process regression (GPR) and support vector machines (SVR). Two different datasets of radiative t…

Polynomial regression010504 meteorology & atmospheric sciencesArtificial neural networkbusiness.industry0211 other engineering and technologiesta117102 engineering and technologyMachine learningcomputer.software_genre01 natural sciencesremote sensing; CDOM; optically complex waters; linear regression; machine learning; Sentinel 2; Sentinel 3RegressionRandom forestSupport vector machineColored dissolved organic matterKrigingLinear regressionGeneral Earth and Planetary SciencesArtificial intelligencebusinesscomputer021101 geological & geomatics engineering0105 earth and related environmental sciencesMathematicsRemote Sensing
researchProduct